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1. Introduction

Earth observation (EO) archive volumes are slowly approaching
the zettabyte scale. The assets they contain are largely under-
exploited: the majority of records have never been accessed. The
situation is exacerbated by the growing interest in and availability
of metric and sub-metric resolution sensors, due to the ever-
expanding data volumes and the extreme diversity of content in
the imaged scenes at these scales. Data from missions such as the
ESA Sentinels will be open and free, thus a much larger audience
will want to use them. Interpreters to manually annotate archived
content are expensive and tend to operate in applicative domains
with stable, well-formalized requirements (e.g. the military) rather
than on the open-ended needs of the remote sensing community at
large or of broad efforts like GEOSS (King et al., 2011).

Semi-automatic tools to analyze, label and summarize the con-
tents of the archived image products need to be rendered a stan-
dard component of payload ground segments.

Development is currently very active in this domain. Work-
shops like the ESA-EUSC-JRC Image Information Mining (IIM)
(http://rssportal.esa.int/tiki-index.php?page=2011_ESA-EUSC-JRC)
are organized to discuss the state of the art in Earth observation
information retrieval. Special issues of Journals such as the IEEE
Transactions on Geoscience and Remote Sensing have been dedi-
cated to the topic (Datcu et al., 2007, 2010). Advanced, specialized
problems related, e.g. to object-based mining methodologies have
been the subject of a number of contributions on publications such
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as the ISPRS Journal of Photogrammetry and Remote Sensing. The
present work analyzes more than one hundred references with glo-
bal geographical representation and whose temporal distribution
is represented in the plot in Fig. 1.

In the US, both research oriented systems and operational tools
are under active development. The first category includes tools like
the I3KR at the Mississippi State University (King et al., 2007) and
VIS-STAMP at the University of South Carolina (Guo, 2003). The
second one comprises VisiMine (Tusk et al., 2003), Insightful Geo-
Browse (Marchisio et al., 1998), Earth Perspective’s GeoIRIS (Shyu
et al., 2006) and the RBIR system at Oak Ridge National Laboratory
(Tobin et al., 2006).

European activity in the domain is rich and diverse. It is embod-
ied in systems such as ESA KIM (Schröder et al., 2000; Datcu et al.,
2002), KEO (Datcu et al., 2003) IIM-TS (Bovolo and Bruzzone,
2007), installed at ESA, DLR, CNES and MEA (Mantovani et al.,
2009), in the finnish prototype (Molinier et al., 2007a) based on
PicSOM system developed at Aalto University and in SemQuery
(Sheikholeslami et al., 2002), in the french PLATO (Rital et al.,
2008), the italian Centro Nazionale Multi-missione/Data Mining
component at ASI (Garramone, 2009), in the upcoming TELEIOS
EO virtual observatory (http://www.Earthobservatory.eu/) and in
the ESA/DLR EOLib connected directly to the Sentinel payload
ground segments among others.

The Brazilian GeoDMA (Korting et al., 2008) is currently con-
strained to the analysis of limited datasets, yet shows promise
for contexts involving larger data volumes. A further interesting
component is TerraLib (Camara et al., 2008), an open-source GIS
software library that handles spatio-temporal data types (events,
moving objects, cell spaces, modifiable objects) and allows spatial,
emote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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Fig. 1. Papers per year in references database. After a seminal period (up to 1995),
the late 1990s have seen a significant growth of the EO mining domain in research
terms. Years 2000–2005 have focused on a number of implementation efforts, with
an explosion in the last five years of the last decade.
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temporal and attribute queries on the database, providing func-
tions for data conversion, display, exploratory spatial data analysis
and spatial and non-spatial queries.

Activity in the Asia and Pacific region is represented by innova-
tive prototype systems such as those in Ruan et al. (2006) and Li
and Bretschneider (2007).

In the face of all of these research and development efforts,
archive owners and operators are attempting a rapid transition
to operational systems for automatic data annotation connected
directly to satellite payload ground segments. Different options
are available among architectures and paradigms for pre-
operational Earth observation digital asset management systems,
data structures and algorithms. In this paper, we conduct a critical
analysis of the state of the art in this domain, specifically focusing
on validated approaches aiming at operational exploitation, in the
hope of providing a contribution to this transition.

This work is structured as follows: Section 2 describes the
review methodology. In Section 3, a basic abstract description of
an EO mining system is used to derive a decomposition of its func-
tionality into modules. The other sections analyze in detail the dif-
ferent choices taken with respect to specific processing steps:
Section 4 describes query specification and processing, Sec-
tion 4.5.1 the indexing approaches, and Section 5 the data inges-
tion and autonomous analysis. Section 6 reports a general
discussion of the review results.

2. Review methodology

The assessment of the state of the art in EO data mining has
involved discovering, aggregating, normalizing and analyzing new
material to a pool of bibliographic sources in different iterations.

The original sources considered have included the journals and
the proceedings of the conferences and workshops mentioned in
Section 1. Items relevant to the query ‘(Earth observation OR
remote sensing) AND (data mining OR content based retrieval)’
according to the arXiv at the Cornell University Library (http://
www.arxiv.org/), Google Scholar (http://scholar.google.com/),
Mendeley (http://www.mendeley.com/) and Zotero (http://
www.zotero.org/) have constituted primary material as well. Pro-
gressive aggregations have included material cited by these
sources. A further significant source of material has been consti-
tuted by exploring publications citing the papers in the pool via
the above literature search tools and Google Scholar in particular.
Finally, a number of publications have been suggested by the anon-
ymous reviewers during the evaluation process.

The analysis of the characteristics of the pooled material by
objective means has been an important methodological point of
the conducted analysis.
Inspired by Guns et al. (2011) and Giuliani et al. (2010), the
metadata describing the considered references have been analyzed
by developing a toolset to build a graph representation of the
co-authorship relations among their authors. The representation
obtained by this analysis process has been manipulated in the open
source Gephi (Bastian et al., 2009) system (https://gephi.org/) to
obtain the graph map depicted in Fig. 2. In this graph, nodes corre-
spond to single authors. Their sizes are proportional to the number
of authored publications in the references pool, while edges, repre-
senting co-authoring relationships, are weighted proportionally to
the considered joint publication number. The graph representation
has then been subjected to a Yifan-Hu layout optimization proce-
dure (Hu, 2005).

The immediately apparent clustering resulting in the figure
actually corresponds to the main EO system families represented
in the considered literature: framework names in larger bold
letters have been added to the diagram for readability. The charac-
teristics of the main families of systems in operation are summa-
rized together with a description of their architectures into
essential subsystems in Tables 1 and 2.
3. System description and decomposition

A few assumptions can be made in order to characterize the
nature of an EO mining system and of its operating domain (Fig. 3).

1. The system runs on very large (petabyte) scale data base
archives. Accessible data and metadata are available for the
archived products.

2. External support datasets are also often available, from pre-
existing vector maps to information from additional sensors,
and might in principle be used, e.g. via data fusion
methodologies.

3. The main goal of an EO mining system is to help efficiently dis-
cover, annotate and retrieve specific data products in the
archive based on a semi-automatic characterization of their
contents/of the contents of the scenes they represent.

4. The overall objective of this capability is to provide support to
environmental understanding activities such as rapid mapping
for disaster management, decision support for planning in
broad scale engineering, global climate change mapping.

5. Additional important overall objectives are those related to the
management and monitoring of the archive and of the whole
remote sensing system.

To achieve the final goal of EO archive-wide semi-automatic
content discovery, annotation and retrieval, the methodologies
envisioned by the EO mining systems described in the considered
literature references vary from rapid mapping to archive naviga-
tion. Image processing and analysis, data mining, geographic data
management, object detection and recognition methodologies are
relevant, yet need to be adapted and combined in order to allow
characterizing vast volumes of unknown—and at metric scales at
least essentially uncategorizable—content. System structures and
algorithmic choices vary significantly as well, from the considered
signal characteristic primitive feature descriptors to data indexing
approaches, from strategies for the optimization of specific needs
for efficient storage access to supervised semantic label learning
and ontology management. Yet in general we can assume that, in
terms of functionality, an EO mining system

� at ingestion time, automatically characterizes the input items
based on a set of characteristics of their data and metadata con-
tents that provide a basis—the primitive feature descriptors—for
all further analysis;



Fig. 2. Graph representation of the references database for the present review paper. Nodes correspond to single authors, with sizes proportional to number of considered
authored publications. Edges represent co-authoring relationships, with weights proportional to number of joint publications considered. The immediately apparent
clustering obtained by a Yifan-Hu layout optimization procedure (Hu, 2005) corresponds to the main EO mining system families represented in the referenced literature.
Framework names in larger letters have therefore been added for readability.
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� semi-automatically annotates the files in an EO archive based
on their content and metadata. Annotation happens either in
terms of semantic classes (e.g. ‘bridge’, ‘house’) or in terms of
application-independent content descriptors (‘spectral’, ‘shape’)
allowing feature synthesis (e.g. mixing spatial/geographic and
content descriptors) and data fusion (e.g. existing geographical
maps with EO products);



Table 1
References for the systems in Table 2.

System Original implementation References

GeoBrowse Insightful Corp. Marchisio et al. (1998)
GeoIRIS University of Missouri Shyu et al. (2007)
I3KR Mississippi State University Durbha and King (2005)
KEO DLR and ACS Datcu et al. (2003)
RBIR ONRL Tobin et al. (2006)
PicSOM Aalto University and VTT Molinier et al. (2007a)
MEA MEEO Natali et al. (2011)

Fig. 3. Unified Modeling Language-inspired EO mining context diagram depicting
the basic operation of an idealized system. Archived images and support data are
semi-automatically annotated with the help of an expert user. The final user queries
the annotated version of the archive via a semantic interface.
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� indexes input item sets, building data structures that allow an
efficient representation of their content for content discovery,
annotation and retrieval aims.

The above points have consequences that are ubiquitous on the
design and evaluation of EO mining systems. For instance, it has to
be noted that all considerations related to efficiency in the remain-
der of this paper refer to query performance rather than optimized
storage, as is typical in OLAP schemes (Chaudhuri and Dayal, 1997).

3.1. Abstract system model

According to Manning et al. (2009), the Information Retrieval
(IR) problem can be stated as the maximization of a certain utility
that ranks visual documents for a user in a specific context.
Describing (long term) user interests about visual information is
crucial to the performance of IR systems. To that end, relevance
can be expressed explicitly via a rating scale. For example, the bin-
ary scale {�1,+1} can be used to express ‘‘dislike’’/‘‘like’’ or ‘‘rejec-
tion’’/‘‘acceptance’’ preferences. Alternatively, a ‘‘five stars’’ scale
such as the one used by Amazon (http://www.amazon.com/) al-
lows the users to give more detailed degrees of appreciation. A
Bayesian probability scale [0,1] can be used to express degrees of
belief in the statement ‘‘data archive item X is interesting to user
Table 2
Summary table of main selected EO mining systems with capabilities and essential algori

System GeoBrowse GeoIRIS I3KR

Sensor Multi-spectr Multi-spectr Multi-spectr
classes
Res. scale (m) 10 1 10

User
interface

Desktop app WebUI + Google WebUI

Earth invocation
Search Interactive Example patch; Semantics;
paradigm data extracted obj. attribs; metadata;

exploration multi-object;
semantic

examples

Spectral Yes Yes Yes
Texture Yes Haralick Wavelets
Shape Yes Yes

Object Yes
Specialized Anthropogenic
Multi-temp. Seasonal trends

trajectory
Multi-object Yes Yes

Clustering S-PLUS Entropy-balanced Kernel PCA +
statistical
environ.

Trees Support Vector
Machines

User labeling Sigmoid functions Description Logics

Query Informix Entropy Balanced
data blade Tree scan
Y in the operative and spatio-temporal context Z’’ (Jaynes, 2003).
Again in Bayesian terms, semantic analysis and annotation in the
context of EO data mining can therefore be understood as the pro-
cedure of finding the semantic scene elements/the labels that best
describe a given dataset in a given operative scenario.

We note that this way of expressing the characteristic function-
ality of an EO mining tool relates its operation to that of a scene
understanding tool performing inference and estimation on the
inversion of a direct data acquisition model.

When models for the scene and the data become so complicated
that the inversion becomes intractable, a common solution is a
thmic components.

IIM/KIM/KEO/IIM-TS RBIR PicSOM MEA

Multi-spectr Multi-spectr Multi-spectr Multi-spectr
SAR, time series SAR, time series
1–10 1 1–10 10

Java-based desktop Desktop app Web UI Web UI

Graphical UI
+/- example pts; Example Example Example
text semantic label patches patches area

256 classes Yes RGB average
Gauss–Markov Fields Limited Gabor
Zernike on shapes Edge

histograms
Edge
histograms

User pluggable NDVI Stratified 56cl.

Pluggable extractors

K-Means Geospatial SOM
clustering

Bayesian classifier Self-organizing Nearest
Neighbor

Sequential DB scan K-dimens. tree map based on DB index
with optimized
comp.

neural network

of probability index
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divide-and-conquer approach in which simpler intermediate
description levels are introduced in the modeling. The scene S is
then assumed to be related to the data D through more levels of
intermediate simpler models Fi that are logically linked

S! F1 ! � � � ! Fn ! D direct modeling
D! Fn ! � � � ! F1 ! S understanding and retrieval

The learning is in this case performed across levels to derive a con-
clusion about the underlying scene.

The generic model corresponding to the treatment given for in-
stance in the content-based image retrieval review paper by
Smeulders et al. (2000) can be adapted to the context of EO and
represented as

D! N !
O! F

G

� �
! I ! C ! S; ð1Þ

where D represents the available data; N represents a normalized
version of D, ready for ingestion; O represents some form of parti-
tioning of N; F describes a set of primitive features for the objects
in O; G is a set of signs directly extracted from the normalized data
N; I is a joint indexing of the features F and the signs G; C represents
a generic abstract classification of the data represented by the index
I; S is a description of the original scene content in terms of seman-
tic classes.

The way this model architecture translates into algorithmic
components is determined by the system architecture.
Fig. 4. Idealized query process decomposition into processing modules an
3.2. Architectural options

A general decomposition of a theoretical query process is de-
picted in Fig. 4. Archived products can be subject to weak and
strong segmentation processes as well as to a simple partitioning
from which regions are extracted. These regions are then subject
to primitive feature extraction, an unsupervised data analysis step
that generates signatures in metric spaces that express signal char-
acteristics. Well-known scene elements (‘‘signs’’) can be handled
by direct detection and characterization. In the case of EO, these
signs correspond to characteristic elements of specific interest
such as for example road networks and simple classes of buildings
such as silos. Concurrently, a preliminary selection of an archive
collection of interest and of an appropriate system configuration
can lead to the specification of a query. This query is formulated
in such a way as to be usable for computing similarities in terms
of the primitive descriptors to the analyzed archive datasets. The
ranked results can then be manipulated by supervised techniques
(e.g. including relevance feedback supervision loops) in order to
be used to synthesize labels that can later be used to enrich the ar-
chive contents with semantic descriptions.

While the above represents a general view of the operation of
an EO mining tool, most of the systems are based on a broad sub-
division between an ingestion component that analyzes the data in
an autonomous manner (data discovery and normalization, primi-
tive feature extraction, indexing), a learning component that is able
d basic operations based on an adaptation of Smeulders et al. (2000).
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to link the primitive feature information with semantic classes
(supervised labeling) and a query processing system that computes
image-to-label and pixel-to-label distances.

The way these main stages are implemented and connected
with each other in actual systems defines their high level
architecture.

KEO (Datcu et al., 2003) is composed of a number of separate
servers with SOAP interfaces for much of the communication both
among them and with the user interface. System web services and
interfaces are orchestrated by the Oracle BPEL Process Manager, to
ensure the correct data flow between modules (Munoz and Datcu,
2010).

GeoBrowse (Marchisio et al., 1998) is based on abstract services
and distributed objects. Its operation is based on the functionality
of an object-relational database management system and of a
scientific problem solving environment, S-PLUS. Communication
between its various components can be established across plat-
forms and the Internet.

Alternative approaches are also represented. The RBIR system in
Tobin et al. (2006), for instance, breaks down into three compo-
nents: (a) a software agent-driven process that can autonomously
search through distributed image data sources to retrieve new and
updated information, (b) a geo-conformance process to model the
data for temporal currency and structural consistency to maintain
a dynamic data archive, and (c) an image analysis process to de-
scribe and index spatial regions representing various natural and
man-made cover types. Again, the different components are inter-
connected by web services with well specified interfaces.

Moving from architectural descriptions to algorithmic choices,
we now start analyzing in detail the different choices taken with
regards to specific elements of an EO mining system. With respect
to Smeulders et al. (2000), we prefer conducting the review in re-
verse order, starting with the intended final user operations, since
we hope this to better clarify the different possible tradeoffs.
4. Query specification and processing

Different approaches exist regarding how a data mining tool for
EO should operate from the point of view of the final user with the
aim of fulfilling the objectives of retrieving datasets of interest and
characterizing them, as introduced in Section 1. In Peijun et al.
(2005), five retrieval patterns are proposed for EO including tem-
plate-based, attribute-based, metadata-based, semanteme-based
and integrated retrieval.

1. Retrieval based on metadata (e.g. acquisition time, swath local-
ization, sensor type). Although this paradigm is not the central
subject of this review, it needs to be understood as a powerful
basis for effective browsing and retrieval, e.g. contributing to
methodologies such as those related to faceted search (see
below).

2. Retrieval based on the explicit specification of query attributes.
In this approach, the query details a series of relevant attributes
that can be extracted from the content of the data items in the
searchable base. Examples might include both application-
independent (e.g. color intervals) and specific descriptors (e.g.
Normalized Difference Vegetation Index – NDVI values).

3. Retrieval based on a template. A user-provided sketch of the
geometry of the elements of interest or a (possibly multi-poly-
gon) relevance mask on a set of existing image items or even
full image examples are provided as a query description. A
query analysis subsystem analyzes the templates generating a
description that can be generalized and compared with corre-
sponding descriptions extracted at ingestion from the items in
the searchable data base.
4. Retrieval based on semantemes, or minimal distinctive units of
meaning, as opposed to sememes, the lower-level units of
meaning carried by a morpheme that can be considered at the
basis of the former query specification approaches. According,
e.g. to Smeulders et al. (2000), a semantic gap needs to be taken
into account representing the lack of coincidence between the
information that one can extract from the visual data and the
interpretation that the same data have for a user in a given sit-
uation in linguistic, keyword-based, contextual terms. The
semantic gap has its source in the fact that in content-based
retrieval the user seeks semantic similarity, but the database
can only provide similarity by data processing. The challenge
for image search engines—especially for those designed to oper-
ate on a broad domain—is to tailor the engine to the narrow
domain the user has in mind via specification, examples, and
interaction, effectively creating the relationship between
semantic information and quantitative descriptions of EO
signals.

5. Integrated retrieval approaches, in which the complementary
strengths of the above methodologies can be combined in order
to express complex information needs.

4.1. Interaction patterns

In practice, these query specification methodologies map to ele-
ments of the user interface and interaction patterns.

� Query by textual semantic label: the user inputs a textual
description of the scene contents that are being sought.
� Query by similarity: the user provides visual examples of the

elements being queried. The examples can be pixel-based (the
user interface allows single clicks to be provided), region-based
(the user can draw polygons around areas of interest) or tile-
based (the input products are cut into image tiles with limited
size, each of which can be used as an example). A further possi-
bility is query-by-sketching, in which the user draws a simple
outline of the elements of interest. The examples can belong
to a single class or to multiple classes that are considered con-
textually. Furthermore, some systems allow the user to provide
both positive and negative examples for each class.
� Metadata-based faceted search: a faceted classification system

combines data search and browsing by classifying each infor-
mation element along multiple explicit dimensions: the user
can specify complex queries on the parameter space by apply-
ing multiple filters to explore the query result collection. For
instance, a dataset might be reduced to a small set of interesting
items by interactively exploring the results of filtering it with
multiple metadata – (e.g. GeoTIFF files only) and content-based
(e.g. only products containing urban areas) criteria. This search
paradigm might be implemented in a tree-structured browsing
interface showing a synthetic statistical description (e.g. the
current cardinality) of the currently selected product set (Ben-
Yitzhak et al., 2008), while allowing the user to further filter
it, as in the Amazon ‘‘Browse Books’’ catalogue interface
(http://www.amazon.com/).

Actual systems mix the different approaches in order to allow
users to express the semantics of the applicative domains they fo-
cus on.

KIM/KEO (Schröder et al., 2000; Datcu et al., 2003) pre-analyzes
all input products, yet the user can in a later phase interactively de-
fine new cover classes of interest based on positive and negative
example product regions. The classification is only used to provide
visual feedback in the training phase. The obtained semantic labels
are naturally extended to the whole archive, used for ranking
search results and to generate classification maps on selected
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products. Systematic processing for classification map generation
on large dataset is also supported.

PicSOM (Molinier et al., 2007a) implements query by visual
examples, with a relevance feedback loop for the interactive learn-
ing of user-level semantics.

GeoIRIS (Shyu et al., 2007) supports query by example (possi-
bly limited by region surrounding geographic and anthropogenic
features), object and multiobject spatial relationship queries as
well as semantic queries to answer information needs such as ‘‘gi-
ven a query image, show me a set of satellite images that depict
objects and spatial relationships that are similar to those in the
query and that are located within a certain radius of a landmark.’’
Klaric et al. (2006) and Shyu et al. (2006, 2007) propose bridging
the semantic gap by a three-step process composed of data trans-
formation (each continuous feature is partitioned into multiple
discrete ranges that are meaningful for a specific semantic), min-
ing associations (association rules map feature intervals into
semantic categories) and semantic modeling in which crisp inter-
vals from association rules are replaced by sigmoid functions
(Barb and Shyu, 2007).

The CNM-DM component (Garramone, 2009) allows users to
query images based on contents via coverage percentages for a
pre-defined set of thematic maps for every ingested product, in
an annotation database (DB) that is made easily accessible by fac-
eted search interfaces (Ben-Yitzhak et al., 2008).

Presented in Marchisio et al. (1998), Marchisio and Cornelison
(1999), Marchisio et al. (2000), GeoBrowse is based on the abstract
services and distributed objects paradigm. GeoBrowse consists of a
Graphical User Interface (GUI), an object-relational database man-
agement system, and a scientific problem solving environment.
Each of these can reside on a separate platform. The system pro-
vides support for intelligent or ‘‘content based’’ queries on large
databases of remotely sensed images and incremental and random
access to 3-D volumes of multispectral data from different sensors
without the added overhead of multiple storage. GeoBrowse pro-
vides the user with the ability to determine and test the limitations
of remote sensing parameters and models by providing alternative
views of uncertainties arising from extrinsic factors. The scientific
data mining environment is provided by S-PLUS, a commercial
implementation of the S statistical programming language. A GUI
offers database browsing capabilities which complement the func-
tionality of the information retrieval engine through visual indices
and a movie player unit.

Connecting an EO mining system directly to applicative tools al-
lows users to deal with archive-wide data analysis for objectives
such as large dynamic rapid mapping and multi-temporal scene
and sensor characterization while at the same time leveraging
the pattern discovery abilities and the large data access capacity
of the system. Durbha et al. (2008) propose that image information
mining systems are standardized in terms of OGC specifications
and in describing the IIM framework in an OGC perspective. This
would facilitate interoperability with several existing OGC web
services and foster the clear separation of the business logic layer
and presentation layer. OGC standardization efforts related to geo-
spatial data servers and processing components in particular
promise making interoperability among system components a
reality (Li et al., 2007). KEO implements interfaces to and function-
alities providing OGC compliant web services as both an informa-
tion source and as a way to distribute the data after semantic
processing.

4.2. Supervised learning and semantic modeling

In order to face the potentially ambiguous meaning of image
structures depending on their contextual understanding, especially
in the case of high resolution remote sensing, in semantic search
engines based on a hierarchical information model of satellite im-
age contents a supervised learning step is used for semantic mod-
eling, to translate the provided examples into generalized rules for
retrieval.

In the naive Bayesian approach, the assumption is made that
the input features—variables belonging to the same level—are
mutually independent and identically distributed (i.i.d.). This
assumption is not necessarily justified, yet, naive Bayes results in
a simple approach, with clear semantics, to representing, using,
and learning probabilistic knowledge. It has often been shown that
naive Bayes rivals, and indeed outperforms, more sophisticated
classifiers on many datasets, especially when feature selection/
synthesis strategies are put into place in order to better adapt to
the i.i.d. assumption. KIM (Datcu et al., 2003) exploits Bayesian
classifiers and Dirichlet models for defining classes of interest for
users. It manages a taxonomy of semantic labels defined on the
hierarchy of signal-based labels. KIM uses a Bayesian meta-proba-
bilistic measure to link images to defined labels, whereas GeoIRIS
(Shyu et al., 2007) employs sigmoid-shaped functions to the same
end. Aksoy (2008) uses Bayesian classifiers to compute the final
classification maps using region level information. To be able to
use Bayesian classifiers, different region-based features such as
statistics and shape features are independently converted to dis-
crete random variables using the K-Means algorithm for vector
quantization.

In Liénou and Campedel (2009), Liénou (2009), basic features
like means and variances are computed on a window around each
pixel, in each spectral band. These descriptors are then vector-
quantized using a K-Means algorithm. Semantic annotation of sa-
tellite images is based on the Latent Dirichlet Allocation (LDA)
model. The model combines a step of supervised Maximum Likeli-
hood classification of patches of the large image to be annotated,
and the integration of the spatial information between these
patches by considering a partial overlap among them.

In Liénou et al. (2010), given a training set of images for each
concept, learning is based on the LDA model. This hierarchical
model represents each item of a collection as a random mixture
of latent topics, where each topic is characterized by a distribution
over words. The LDA-based image representation is obtained using
simple features extracted from image ‘‘words’’. The capability of
the LDA model to assign probabilities to unseen images is then
used to classify the patches of the large image into the semantic
concepts, using the maximum-likelihood method.

Support Vector Machines (SVMs) provide the basis for a number
of systems. Mountrakis et al. (2011) review remote sensing imple-
mentations of SVMs and compare them with methods from maxi-
mum likelihood classifiers to neural networks in a wide range of
applications from coal reserve detection to urban growth monitor-
ing. In Shah et al. (2005), a learning phase is applied at this stage
that associates the middle level descriptors to the concepts in the
higher-level ontology by means of an SVM (Vapnik, 1999) method.
These associations are grouped into models specific to a semantic
class and used for querying. In Li and Narayanan (2004) land cover
information corresponding to spectral characteristics is identified
by supervised classification based on SVMs with automatic model
selection, while textural features characterizing spatial informa-
tion are extracted using Gabor wavelet coefficients. Within identi-
fied land cover categories, textural features are clustered to acquire
search efficient space in an object-oriented database with associ-
ated images stored in an image database.

Costache and Datcu (2007) propose Bayesian inference to learn
categories and an SVM classifier to assign semantics. The approach
is enhanced with learning/unlearning functions. Costache et al.
(2006a) present a probablistic extension of SVMs in a Bayesian
framework that allows complementing them with memory simu-
lation mechanisms for machine learning purposes.
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SVMs are combined with active relevance feedback in Ferecatu
et al. (2005), Ferecatu (2005) and Ferecatu and Boujemaa (2007).

Decision trees are also exploited for structural EO data mining—
finding and describing structural patterns in data. Aksoy et al.
(2009) show how decision tree classifiers can be learned with
alternative (surrogate) decision nodes and result in models that
are capable of dealing with missing data during both training
and classification to handle cases where one or more measure-
ments do not exist for some locations. Aksoy and Cinbis (2010)
compute the degrees of satisfaction of the extracted spatial rela-
tionships between objects that satisfy user-specified attribute cri-
teria. The objects are ranked according to a combined measure (e.g.
product, sum, and weighted sum) that involves the confidence of
detection, the attribute values, and the spatial constraints.

Bordes and Prinet (2008) use a bag-of-words representation of
textons while taking into account spatial information. A generative
probabilistic modeling of the distribution of textons is proposed.
The parameters of the mixtures components are estimated using
a Expectation–Maximization algorithm (Moon, 1996), and the
number of classes in a database estimated by Minimum Descrip-
tion Length (Rissanen, 1985).

Koperski and Marchisio (2000) and Koperski et al. (2002b) de-
scribe a system for interactive training of models for semantic
labeling of land cover. The models are built based on three levels
of features: (1) pixel level, (2) region level, and (3) scene level. A
Bayesian algorithm and a decision tree algorithm are developed
for interactive training. The Bayesian algorithm enables training
based on pixel features. The scene level summaries of pixel fea-
tures are used for fast retrieval of scenes with high/low content
of features and scenes with low confidence of classification. Graph-
ical tools for the exploration of decision trees allow insight into the
interaction of features used in the construction of models.

4.3. Iterative query specification

A common approach allows users to specify examples for the
query and to evaluate the effectiveness of the currently defined
one in successive iterations.

Relevance feedback techniques are used in tools like KIM (Datcu
et al., 2003) and PicSOM (Molinier et al., 2007a) to improve retrie-
val efficiency. Blanchart et al. (2011) take into account semi-super-
vised methods by mixing an auto-annotation component with a
category search engine which combines generic image class search
and object detection. The proposed concept relies thus on comple-
mentary elements: an auto-annotation component, a generic cate-
gory search engine and an object detection tool.

Alber et al. (2001) show that a triangle inequality search tech-
nique applied to a relevance feedback retrieval algorithm can sig-
nificantly speed up the search for and retrieval of physical events
of interest in large remote-sensing databases. An improvement in
retrieval speed is illustrated using hurricane queries applied to
the multispectral GOES weather satellite database.

Costache et al. (2006b) present a categorization-based rele-
vance feedback search engine for EO images repositories. The
developed method is based on SVMs: the process starts with a
query phase in which the user is selecting among a randomly ma-
chine-generated image sequence one which best describes his/her
interest. The selected image is then used by the system for retrieval
purposes in the following way: based on a measure of similarity
(e.g. Euclidean distance) the system performs a ranking of the
images and returns the top and bottom images. The returned
images are then labeled by the user as relevant/irrelevant and
are used to train an SVM classifier. The systems performs again a
ranking but this time, based on the absolute value of the distance
function, in ascending order. The top images with the smallest
absolute value of distance function are selected to be shown to
the user at the next step. They are the most ambiguous images
as they have a very small decision function value. In this way
one step after another the separation surface between the relevant
and irrelevant images is better traced.

Non-binary graded relevance feedback is considered by a few
authors. Most of the existing methods for annotating semantic
meaning to geospatial images are trained using binary feedback
from users. Such approaches may lead to suboptimal models espe-
cially due to the fact that semantic relevance of images is rarely a
binary problem. Barb and Shyu (2010a,b) present an algorithm to
link low-level image features with high-level visual semantics
using graded relevance feedback from image analysts. This linkage
is done using flexible fuzzy possibility functions that mathemati-
cally model the existence of visual semantics in new images added
to the database.

A number of papers (Ferecatu and Boujemaa, 2007; Tuia et al.,
2009) focus instead on active learning for improving remote sens-
ing content based retrieval: the learning algorithm is able to inter-
actively query the user to obtain the desired outputs at new data
points.

The same approach is used by Rital et al. (2008). They propose
to adapt a classical multimedia CBIR approach to EO images: they
are cut into small images from which a vectorial signature is ex-
tracted. Then an active learning-based retrieval algorithm is ap-
plied in order to profit by the human expertise. The result of
each query can be stored in a memory using both keywords and
classifier model. The system is evaluated using a small labeled
database corresponding to a typical land cover classification task.

In Li and Bretschneider (2007), a stepwise retrieval scheme is
adopted to balance effectiveness and efficiency. The semantics
are used to retrieve a set of candidate images that are related to
the estimated concepts of the user. Then, the similarity between
the query and the candidate images found in the first stage is mea-
sured by integrated region matching.

4.4. Visualization and visual analytics

The topic of visualization represents an issue with respect to the
main data processing in EO mining whose importance cannot be
overstated: properly addressing the human visual system of both
expert and basic users in the diagram in Fig. 3 requires detailed
consideration.

The goal of visual enhancement methods—either by image pro-
cessing techniques or by selecting specific spectral bands—is to
maximize the response in the human visual system and increase
the saliency of the object/area of interest.

Bratasanu et al. (2011) propose a spectral band discovery meth-
odology for advancing multispectral satellite image visual analysis.
The paper describes an interactive technique to discover the opti-
mum combination of three spectral features of a multispectral
satellite image that enhances visualization of target classes/objects.

The inclusion of a Self-Organizing Map (SOM) is one of the cen-
tral elements of PicSOM (Molinier et al., 2007a,b) and of its user
interface and key algorithmics. After a SOM depicting and structur-
ing the data is trained, the user can visually query the database and
the system automatically finds images similar to those selected.

Chen et al. (2008) develop a visual analytics approach that
leverages human expertise with visual, computational, and carto-
graphic methods to support the application of visual analytics to
relatively large spatio-temporal, multivariate data sets. It develops
and applies a variety of methods for data clustering, pattern
searching, information visualization, and synthesis, focusing on
combining both human and machine-based approaches to discover
hidden information.

Although not directly interested with EO data but rather with
geographic data, Guo (2003) describes a human-centered explora-
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tion environment, which incorporates a coordinated suite of com-
putational and visualization methods to explore high-dimensional
data for uncovering patterns in multivariate spaces. It includes
interactive feature selection and hierarchical clustering methods
as well as a suite of coordinated visualization and computational
components centered around the above two methods to facilitate
a human-led statistical data exploration. Guo et al. (2006), Guo
and Gahegan (2006) integrate computational, visual, and carto-
graphic methods to develop a geovisual analytic approach for
exploring and understanding spatio-temporal and multivariate
patterns. The developed methodology and tools can help analysts
investigate complex patterns across multivariate, spatial, and tem-
poral dimensions via clustering, sorting, and visualization. Specifi-
cally, the approach involves a SOM, coordinate plots, several forms
of reorderable matrices, a geographic multiple display, and a
2-dimensional cartographic color design method. The coupling
among these methods leverages their independent strengths and
facilitates a visual exploration of patterns that are difficult to dis-
cover otherwise.

4.5. Query processing

The query execution process takes in input a set of query items
and returns a set of ranked results. While execution performance is
the primary concern, important differences arise with respect to
the query specification process that subsequently determine the
characteristics of all system components that prepare the data
for this step. Query execution of course drastically depends on
the query formulation strategy.

Tools such as the CNM-DM component (Garramone, 2009) only
output thematic maps based on pre-defined classes and coverage
percentages that are fed into an attribute DB.

Most other systems allow users to interactively define new ele-
ments of interest instead. A first approach is to allow query by
class/query by value based on vector quantization codewords. Vel-
laikal (1995) use vector quantization codewords as the remote
sensed image features for content based retrieval. Different distor-
tions measures are considered to enhance the performance of the
codewords as ‘‘content descriptors’’ including classification accu-
racy. Both query by class and query by value are implemented.

KIM (Datcu et al., 2003) uses a relevance feedback mechanism
for updating a Bayesian network that is used to perform data clas-
sification and retrieval tasks.

In the GeoBrowse system, decision tree classifiers are used (Ak-
soy et al., 2004) for interactive learning of land cover models and
mining of image archives: they can operate on both numerical
(continuous) and categorical (discrete) data sources, and do not re-
quire any assumptions about neither the distributions nor the
independence of attribute values.

A methodology to execute complex queries by the integration of
an inference engine is considered by Durbha et al. (2005a) for I3KR.
The paper maintains that pursuing the semantic web model for
semantic annotation of remote sensing data archives provides
attractive alternatives to the traditional methods of information
integration and retrieval. It builds upon semantic web technologies
and combines them with pattern recognition and machine learning
techniques to develop a framework for semantics driven retrieval
of knowledge from EO data archives. At the heart of the framework
is a middleware for ontology brokering that provides support for
the development of application level ontologies that represent
the concepts of the information sources. The Ontology Web Lan-
guage is used to build them. Domain-specific ontologies help to de-
fine concepts in a finer granularity. These fine-grained concepts
then allows to determine specific relationships among features
(e.g. shape, texture, color) in images that may be used to classify
those images. Durbha and King (2005) employs an unsupervised
segmentation algorithm to extract homogeneous regions and cal-
culate primitive descriptors for each region based on color, texture,
and shape. They perform an unsupervised classification by means
of a kernel principal components analysis method, which extracts
components of features that are non-linearly related to the input
variables, followed by a support vector machine classification to
generate models for the object classes. The assignment of concepts
in the ontology to the objects is achieved automatically by the inte-
gration of a description logics-based inference mechanism, which
processes the interrelationships between the properties held in
the specific concepts of the domain ontology. In this line, Durbha
et al. (2005b, 2007) add a methodology for domain specific quali-
tative spatial reasoning in coastal wetlands. In Durbha et al.
(2007), an SVM-based classification is applied for generating pre-
dictive models. Durbha et al. (2010) propose a set of feature selec-
tion and feature transformations based on a wrapper-based genetic
algorithm approach. A support vector machine classification is ap-
plied for generating predictive models for those land-cover classes
that are important in a coastal disaster event.

Ruan et al. (2006) propose a framework based on domain-
dependent ontology to perform semantic retrieval in image ar-
chives. Homogeneous regions in the data products are described
by high-level concepts depicted and organized by a domain spe-
cific ontology. Interactive learning techniques are employed to
associate regions and high-level concepts. These associations are
used to execute queries. Additionally, a reasoning mechanism inte-
grating an inference engine enables mining the inter-relationships
among domain concepts and their properties to satisfy user
requirements. An ontology is used to provide a sharable and reus-
able concept set as infrastructure for high level extension such as
reasoning.

Datta et al. (2006) proposes a two-stage architecture for auto-
matic retrieval of satellite image patches. Semantic categorization
is done by a learning approach involving the two-dimensional
multi-resolution hidden Markov model. Items that do not belong
to any trained category are handled using an SVM-based classifier.

4.5.1. Data management
Effectively exploiting data storage in order to maximize the po-

tential of EO mining systems is a central issue for pre-operational
and operational systems. Different approaches are considered in
the literature with respect to this point.

While a number of systems such as KIM (Datcu et al., 2003) ex-
ploit relational DBs essentially as data storage facilities, Shyu et al.
(2006) exploit relational queries directly by representing in them
mining association rule intervals.

NoSQL DBs (Xiao and Liu, 2011) promise scalability, network
partitioning, replication and higher performance than traditional
relational systems for remote sensing image databases.

An approach to spatial On-Line Analytical Processing (OLAP)
based on data cubes is presented in Rivest et al. (2005). The paper
specifically focuses on interactive spatio-temporal exploration of
data via geovisualization/animation.

ASI’s CNM-DM (Garramone, 2009) and prototype systems at
ESA such as the User Services Next Generation tool already provide
faceted content-based search based on object-oriented databases.
They exploit a local relational Database Management System
(DBMS) for temporary object serialization, feeding data into an ob-
ject oriented DB for attributes that are then made available for fac-
eted search.

The RBIR system described by Tobin et al. (2006) exploits XML-
based DBs instead for metadata and content-based searches. It de-
scribes the implementation of a binary decision tree of the image
features based on k-dimensional (k-d) tree methods (Arya et al.,
1998). The accuracy of the system is selectable as a trade-off be-
tween nearest neighbor performance and computational effi-
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ciency. Through this approach, retrieval efficiencies on the order of
five seconds for 100,000 indexed images can be demonstrated (To-
bin et al., 2002).

4.5.2. Index generation and maintenance
Indexing is meant to improve the speed of data retrieval opera-

tion by building summary representations of the content of the
database in terms that exploit the inherent organization of the data
to allow very fast query execution procedures: the goal of indexing
is to organize the image data (e.g. filenames, features, indexing
codes, etc.) in the database such that a ranked list of nearest neigh-
bors can be efficiently retrieved in response to a query without
performing an exhaustive comparison to all the records in the
database.

In systems such as KIM (Datcu et al., 2003) no indices are stored
in the DB. The ranking phase operates sequentially on all records
by dynamically computing Bayesian estimates of query-to-tile
match based on the selected primitive features.

Whereas an exhaustive nearest-neighbor search of the n vectors
(i.e. images) in the database would imply O(n) computations, a kd-
tree approach involves a complexity O(log2(n)).

In GeoIRIS (Shyu et al., 2007) two indexing mechanisms are
used for tile-based and object-based query methods. Indexing of
continuous valued features is done using the entropy balanced sta-
tistical (EBS) kd-trees, and indexing the binary-valued features is
performed with the entropy balanced bitmap (EBB) tree (Scott
et al., 2011), which exploits the probabilistic nature of bit values
in automatically derived shape classes. Tile-based indexing pro-
vides access into localized areas of similar features. Object-based
indexing includes both individual objects and spatial configura-
tions of multiple objects.

Column-based and raster DB systems (Ivanova et al., 2007;
Widmann and Baumann, 1998) attempt automatic record optimi-
zation and autonomous index generation. Although the results
largely improve on sequential scan in traditional relational DBMSs,
more advanced implementations (e.g. based on kd-trees) are
needed (Kao et al., 1998) for optimal results.
5. Ingestion

The first necessary step before data analysis is the discovery of
the data and its normalization so that all subsequent phases of the
analysis process can operate effectively. This functionality corre-
sponds to crawlers in web information retrieval engines.

KEO (Schröder et al., 2000; Datcu et al., 2003) is directly con-
nected to specific DFD and ESA feeds and rolling archives and con-
tinuously updates its contents respectively with MerisRR and
TerraSAR-X data.

In a parallel concept, Bingham et al. (2009) take the concept of
Really Simple Syndication (RSS) feeds, for delivering regularly
changing web content, and extend this to represent a stream of
data granules and deliver regularly changing Earth science data
content. It envisages filtering content based on the metadata of a
feed in order to identify granules of interest based on user-defined
criteria.

5.1. Dataset tiling

In terms of Smeulders et al. (2000), a few possible ways exist to
decompose images in order to analyze their contents, each one cor-
responding to a different class of content descriptors.

� No decomposition: sign extraction.
� Resolution reduction: salient features.
� Generic tiling: generalistic features.
� Segmentation: region features.
� Object extraction: object-based descriptors.

The effects of sensor resolution are especially important in
determining which of the approaches provides the most interest-
ing results.

A tiling approach similar to the one in Rital et al. (2008) is used
in the PicSOM system (Molinier et al., 2007a). Here, query by visual
examples, relevance feedback and ranking of images rely on the
standard multimedia CBIR approach related to cutting satellite
images into small images (imagelets). Most systems consider in-
stead geographically-inspired tiling grids.

Trias-Sanz et al. (2008) review several existing color space
transformations and textural features for the segmentation of
high-resolution multispectral aerial images with a hierarchical
segmentation algorithm. A method to quantitatively evaluate the
quality of a hierarchical image segmentation based on Pareto opti-
mality is presented, and the behavior of the segmentation algo-
rithm for various parameter sets is explored.

Guo et al. (2009) propose a semantic-aware two-stage wavelet-
based image segmentation approach, which preserves the seman-
tics of real-world objects during the segmentation process. The
system is specifically aimed at high resolution remote sensing im-
age retrieval.

Gueguen et al. (2011) present an interactive image information
mining tool handling millions of structures in a scene. The learning
process is incremental, incorporating new training samples at low
computational cost. Input images are first segmented in multi scale
blobs by segmentation of differential morphological decomposi-
tion, and then are characterized by spectral and shape features.
Both cluster- and SVM-based classifiers are compared in terms of
accuracy, where the accuracy is the complement of the pixel based
probability of errors. Classifier training is performed incrementally
in both cases, benefiting from a global classification visualization at
each step.

Shah et al. (2005) employ an unsupervised segmentation algo-
rithm to extract homogeneous regions and calculate primitive
descriptors for each region based on color, texture and shape.
The primitive descriptors are described quantitatively by middle
level object ontology.

5.2. Primitive features and signs

Ingestion operates by analyzing the different information
sources trying to unsupervisedly characterize them, often in appli-
cation-independent manners. EO mining systems operate on prim-
itive signal features extracted from the original data. Their
performance depends crucially on them and on their adaptation
to specific mining objectives. Generalist primitive feature extrac-
tors are used to make application-independent image mining pos-
sible. These can then be complemented by vertical application-
specific feature extractors dedicated to specific targets, corre-
sponding to ‘‘sign’’ descriptors in Smeulders et al. (2000).

As per Smeulders et al. (2000), all systems consider first a prim-
itive feature extraction step that transposes the image data into an-
other spatial data array. The different descriptor extraction
methods (e.g. color, local texture, local geometry) may be charac-
terized in general by:

f ðxÞ ¼ g � iðxÞ

where i(x) is the image, element of image space I, g is an operator on
images, � denotes applying the operator and the resulting image
field is given by f(x). Computational parameters of g may include
the size of the neighborhood around x to compute f(x) or a homoge-
neity criterion when the size of the patch to compute f(x) depends
on the actual data, as in Soccorsi et al. (2006), for example. The pur-
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pose of this signal processing in image retrieval must be to enhance
aspects in the image data relevant to the query and to reduce the
remaining aspects.

The aspect of dealing with invariance as a tool to deal with acci-
dental distortions in the information introduced by the sensory gap
is often handled by primitive classification. Again according to
Smeulders et al. (2000), the aim of invariant descriptions is to iden-
tify objects, no matter from how and where they are observed, at
the loss of some of the information content. If two objects ti (or
two appearances of the same object) are equivalent under a group
of transformations W, they are in an equivalence class

t1�W t2 () 9w 2W : t2 ¼ w � t1:

A property f of t is invariant under W if and only if ft remains the
same regardless the unwanted condition expressed by W,

t1�W t2 ) ft1 ¼ ft2 :

Again as noted in the paper cited above, the degree of invari-
ance, that is, the dimensionality of the group W, should be tailored
to the recording circumstances. The aim is to select the tightest set
of invariants suited for the expected set of non-constant
conditions.

We classify the primitive extraction into global features, salient
features, object features and signs according to Smeulders et al.
(2000).

5.2.1. Signs
The ability of an IR system to effectively incorporate and exploit

an external primitive feature extractor for search in large archives
is a central factor in defining its adaptability and hence its real-
world applicability.

The KEO system (Datcu et al., 2003) includes tools to allow
users specify primitive feature extractors dedicated to specific tar-
get classes.

Environments such as ENVI/IDL (Canty, 2007; Research Sys-
tems, 2003) include large repositories of image and object analysis
modules. In particular, the ENVI EX system provides feature extrac-
tion, classification, orthorectification and change detection func-
tions. An integration with the ArcGIS platform allows users to
integrate image analysis processes into GIS models via high-level
programming languages such as IDL.

The eCognition image analysis software is introduced by Benz
et al. (2004) with the principal strategies of object-oriented analy-
sis behind it, discussing how the combination with fuzzy methods
allows implementing expert knowledge and describing a represen-
tative example for the proposed workflow from remote sensing
imagery to GIS.

Similarly, QGIS (http://www.qgis.org/), gvSIG (http://gvsig.org/)
and GRASS (http://grass.osgeo.org/) offer an open-source alterna-
tive (Neteler et al., 2006) for integrated GIS and remote sensing im-
age analysis that includes statistical analysis tools based on low- as
well as high-level programming environments such as R (http://r-
project.org/).

Inglada and Christophe (2009) describe the Orfeo ToolBox (OTB),
a remote sensing image processing library developed by CNES that
includes tools for the operational exploitation of the future sub-
metric optic and radar images (rapid mapping, 3D aspects, change
detection, texture analysis, pattern matching, optical and radar
complementarity). A number of the algorithms made available in
the OTB can be used as sign extractors in EO mining engines.

5.3. Object- and region-oriented descriptors

Object-oriented methods (Blaschke, 2010) are making consider-
able progress towards a spatially explicit information extraction
workflow, such as is required for spatial planning as well as for
many monitoring programmes.

The exploitation of available prior knowledge maps for the
extraction of important topographic objects, like buildings and
roads, is investigated in Baltsavias (2004). The paper focuses on as-
pects of knowledge that can be used for object extraction: types of
knowledge, problems in using existing knowledge, knowledge rep-
resentation and management, current and possible use of knowl-
edge, upgrading and augmenting of knowledge. An overview on
commercial systems regarding automated object extraction and
use of a priori knowledge is given.

The GeoIRIS system (Shyu et al., 2007) supports the retrieval of
tiles according to the spatial configuration of the objects they con-
tain. In particular Scott et al. (2005) include a method to model
spatial relationships among sets of three or more objects in satel-
lite images for scene indexing and retrieval by generating discrete
spatial signatures. The method is highly insensitive to scaling, rota-
tion, and translation of the spatial configuration. In Aksoy and Cin-
bis (2010), directional spatial relationships among objects are
considered to enable object detection based on the properties of
individual objects as well as their directional spatial relationships
to other objects based on morphological modeling of relative-posi-
tion-based spatial relationships. This information is incorporated
into the Bayesian decision rule as spatial priors for contextual clas-
sification and retrieval. The directional landscapes considered can
be used for image retrieval for geospatial intelligence.

CBIR using shapes and topology is considered in Agouris et al.
(1999) for sketch-based query formulation. A spatial data manage-
ment system optimized for such queries and a set of features
describing the geometry of the sketched query shapes as well as
their spatial arrangement are presented.

In Guo et al. (2009), to better capture semantic features for ob-
ject discovery, a hyperclique pattern discovery method is exploited
to find in the DB co-occurrence patterns representing complex
objects that consist of several co-existing individual objects that
usually form a unique semantic concept. In Gautama et al.
(2007), spatial relations between objects are used to find a reliable
object-to-object mapping. Graph matching is used as a flexible
query mechanism to answer the spatial query.

Except for sign extractors, other kinds of data content descrip-
tors need data partitioning strategies. Both strong and weak seg-
mentation can be used to this end, resulting respectively in
salient features and in region based descriptors.

Even though correct identification of pixels and regions im-
proves the processing time for content extraction, manual inter-
pretation is often necessary for many applications because two
scenes with similar regions can have very different interpretations
if the regions have different spatial arrangements. Therefore, mod-
eling spatial information to understand the context is an important
and challenging research problem. In Tobin et al. (2006), once the
features of the image segments have been extracted, it is possible
to use this feature vector as an index for retrieval. A geospatial
clustering procedure is performed using a region growing tech-
nique to connect large contiguous and homogeneous segments of
similar structure and texture characteristics. In Li and Bretschneid-
er (2007), every image is segmented into disjoint regions using a
simple segmentation algorithm, and the low-level features are ex-
tracted from each region. In a second step, the region descriptors,
i.e. multidimensional vectors, are classified into a finite number
of frequent patterns with similar appearance by using a vector
quantization algorithm which creates a reduced representation of
possible region descriptors. The images in the database are en-
coded by so-called codes based on the result of the previous
quantization.

Shape similarity is a powerful tool for query processing. Dell’Ac-
qua and Gamba (2001) present a ‘‘point diffusion technique’’ meth-
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od for shape similarity evaluation suitable for application to simi-
larity-based retrieval from remotely sensed meteorological image
archives, where shapes are hardly defined but are still among the
major features of interest. Silva et al. (2005) combine a region-
growing segmentation algorithm on multi-temporal change
images with a structural classifier that operates on shape descrip-
tors for mining evolutions typically related to deforestation
patterns. In Aiyesha (2005), from 56 full hemisphere infrared scans
of the Earth taken by Meteosat satellites, regions are extracted
using region growing. After region extraction, polygonal approxi-
mation is applied to the region shape, and local features of the
polygons are hashed to provide an association space. This space be-
comes the indexing structure through which retrieval takes place.
Aksoy (2008) models regions using the statistical summaries of
their spectral and textural properties along with shape features
that are computed from region polygon boundaries. The statistical
summary for a region is computed as the means and standard devi-
ations of features of the pixels in that region. Multi-dimensional
histograms also provide pixel feature distributions within individ-
ual regions.

Relationships among regions can be considered as well. The
VisiMine system (Tusk et al., 2003; Koperski et al., 2002a; Aksoy
et al., 2002, 2005) includes automatic methods for the extraction
of topological, distance-based, and relative-position-based rela-
tionships between region pairs where such relationships can be
successfully used for image classification and retrieval in scenarios
that cannot be expressed by traditional pixel- and region-based ap-
proaches. Kalaycilar et al. (2008) describe an image representation
using spatial relationship histograms that extend relational graphs.
These histograms are constructed by classifying the regions in an
image, computing the topological and distance-based spatial rela-
tionships between these regions, and counting the number of
times different groups of regions are observed in the image. A
selection algorithm produces compact representations by identify-
ing the distinguishing region groups that are frequently found in a
particular class of scenes but rarely exist in others.

5.4. Spectral and textural descriptors

Almost all of the considered systems use spectral and textural
descriptors as well as local edges and patterns.

GeoIRIS (Shyu et al., 2007) exploits histograms for panchro-
matic, grayscale RGB, and near-infrared data. As textural features,
KIM (Schröder et al., 2000; Datcu et al., 2003) considers Gauss–
Markov Random Field-based descriptors (usually from a single
specific channel) for both optical and SAR data. Advanced Bayesian
reconstruction methodologies (Walessa and Datcu, 2000) are used
to cope with the specificities of SAR sensors.

Aksoy (2008) extracts spectral and textural features for each
pixel. Gabor texture features are extracted by filtering the first
principal component image with Gabor kernels at different scales
and orientations and using kernels rotated by np/4, n = 0, . . ., 3,
at 4 scales resulting in feature vectors of length 16. Finally, each
feature component is normalized by linear scaling to unit variance.
Tobin et al. (2006) primarily exploit edge information to describe
texture and structure to avoid performance degradation due to
variation in the spectral content. The approach characterizes seg-
ment texture using local binary patterns (Pietikainen et al., 2000)
and local edge patterns (Yao and Chen, 2003). The GeoIRIS system
described in (Shyu et al., 2007) exploits texture measures based on
Haralick co-occurrence matrices.

Shah et al. (2005, 2007) propose to perform image segmenta-
tion using color and texture features from the wavelet coefficients
for the region-based retrieval in remote sensing image archives.
Based on that, Shah et al. (2006) exploit Independent Component
Analysis (Comon, 1996) for feature selection/synthesis.
Clustering issues include the possibility to consider different
distance measures among n-dimensional multi-spectral vectors
(Cerra et al., 2011), ranging from euclidean (Keogh et al., 2004)
to spectral angle (Kruse et al., 1993, 1999), from spectral correla-
tion (De Carvalho and Meneses, 2000) to information divergence
measures (Du et al., 2004). KIM (Datcu et al., 2003) uses K-Means
clustered multi-spectral feature histograms based on either euclid-
ean or spectral angle distance measures.

A few systems consider specialized descriptors as well. In the
GeoIRIS system (Shyu et al., 2007), specialized features are
exploited to represent characteristics of linear features such as
roads (linearity, directionality) and the scale of objects such as
buildings (pixel correlation run-length and scale-based descriptors
of object content generated from differential morphological pro-
files, Pesaresi and Benediktsson, 2001). Furthermore, a set of fea-
tures based on normalized grid descriptors are extracted for each
object (Zhang and Lu, 2001). The histogram of forces approach
(Matsakis and Nikitenko, 2005) is used to generate a spatial signa-
ture of an object configuration by extending the pairwise determi-
nation of spatial relationships. GeoIRIS also includes
‘‘anthropogenic’’ primitive descriptors to try and separate popu-
lated from natural areas. The PicSOM system (Molinier et al.,
2005, 2007a) exploits as features color moments and textures to-
gether with NDVI and edge histograms.

5.5. Data fusion

Data fusion is a significant topic in its own right. Molch (2010)
for instance examines the representation of semantic categories
integrating Ikonos and QuickBird imagery in the knowledge-based
information mining system KIM. A processing sequence is pre-
sented, which accounts for sensor-related differences along with
an evaluation of the application of IIM technologies in operational
rapid-mapping scenarios.

The PicSOM system (Molinier et al., 2007a,b), includes features
adapted to man-made structures detection in high-resolution opti-
cal satellite images. Fusion of panchromatic and multispectral
information can be obtained by training several SOMs in parallel
(one per feature). Molinier et al. (2008) investigates the potential
of PicSOM for quad-polarized ALOS PALSAR images. The system
was originally developed to operate on QuickBird MultiSpectral
and Panchromatic data.

5.6. Multi-temporal mining

Satellite Image Temporal Series (SITS) represent a very active
objective of EO mining research: the extension of the change detec-
tion problem—including high geometric resolution data (Padwick
et al., 2011)—to long series of semi-periodic data.

In Walter (2004), a change detection approach based on an ob-
ject-based maximum likelihood classification of groups of pixels
corresponding to objects in an existing GIS database used to pro-
vide training areas.

The PicSOM system (Molinier et al., 2007a) implements original
methods for both supervised and unsupervised change detection
based on the ranking of discrimination values for imagelet pairs,
and distance on the SOM lattice. The system is specifically evalu-
ated for the analyzing variations in the presence of buildings, dif-
ferentiating true changes with respect to unsubstantial effects
(e.g. changes in illumination).

A seminal work is represented by Héas and Datcu (2005): a
hierarchical Bayesian modeling of SITS information content en-
ables users to link semantic interests to specific spatio-temporal
structures. The hierarchy is composed of two inference steps: an
unsupervised modeling of dynamic clusters resulting in a graph
of trajectories, and an interactive learning procedure based on
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graphs which leads to the semantic labeling of spatio-temporal
structures.

The IIM-TS system (Bovolo and Bruzzone, 2007), instead, inte-
grates probabilistic multi-temporal descriptors into the KEO
system.

On a methodological level, information theoretically motivated
approaches are well represented. Cerra et al. (2010) and Gueguen
and Datcu (2007) present an algorithm based on the Information
Bottleneck principle composed of a parameter estimation and a
model selection. Two approaches are presented. In the first ap-
proach, each image of the SITS is segmented and the obtained re-
gions are described by textural models. The Information
Bottleneck method is further used to characterize the image seg-
ments of the SITS in a spatio-temporal way. In the second method,
the geometrical information is extracted from a temporal adja-
cency graph of the spatial regions, and the radiometric and textural
information is then extracted through the Information Bottleneck
method. This approach leads to a temporal characterization of
the spatial regions of the SITS. In the context of compression-based
analysis, Gueguen and Datcu (2008) present a Satellite Image Time
Series coding system that produces a code in two parts: one con-
tains the predictor and the statistical context tree, and the other
one contains the residual error coded in an optimal way. This en-
ables the creation of an index of spatio-temporal structures.

Julea et al. (2006) propose an approach similar to that of Manto-
vani et al. (2009) and Natali et al. (2011) based on the use of
sequential patterns for the analysis of multi-temporal remote sens-
ing data. Indeed, as sequential patterns include the temporal
dimension, they can be used for extracting frequent evolutions at
the pixel level, i.e. frequent evolutions that are observed for geo-
graphical zones that are represented by pixels. While Julea et al.
(2006) deal with METEOSAT and ERS satellite images, the Multi-
sensor Evolution Analysis (MEA) methodology proposed by Manto-
vani et al. (2009) and Natali et al. (2011) is able to perform Land
Use/Land Cover Change analysis on (A)ATSR (1 km resolution)
and AVNIR-2 (10 m resolution) data.

This approach is extended by Julea et al. (2011) by introducing a
grouped frequent sequential pattern mining technique dedicated
to the extraction of groups of pixels sharing both a common tem-
poral pattern and satisfying, on average, a minimum spatial con-
nectivity measure. Demonstrations are carried out on varied
datasets including multi-temporal electro-optical data as well as
on SAR image series.

To overcome the need for data quantization and the depen-
dency on temporal sampling in the above, Petitjean et al. (2012)
introduce and specialize the dynamic time warping similarity mea-
sure to satellite image series. Their methodology is able to deal
with irregularly sampled series and allows the comparison of pairs
of time series where each element of the pair has a different num-
ber of samples, e.g. due to cloud contamination. It represents a no-
vel and flexible tool to handle heterogeneous data produced by
remote sensing.

5.7. Discretization

As mentioned above, clustering issues include the possibility to
consider different distance measures among n-dimensional multi-
spectral vectors (Cerra et al., 2011), ranging from euclidean (Keogh
et al., 2004) to spectral angle (Kruse et al., 1993, Kruse et al., 1999),
from spectral correlation (De Carvalho and Meneses, 2000) to
information divergence measures (Du et al., 2004).

KIM (Datcu et al., 2003), for instance, uses K-Means clustered
multi-spectral feature histograms based on either euclidean or
spectral angle distance measures. GeoIRIS (Shyu et al., 2007)
exploits histograms for panchromatic, grayscale RGB, and near-
infrared data. Maheshwary and Srivastava (2009) apply K-Means
on color moments and co-occurrence matrices, then computes
Euclidean distances and validates the approach on three LISS III
+ multi-spectral satellite images with 23.5 m resolution.

Hybrid hierarchical approaches are also represented. Aksoy
(2006) describes a hybrid hierarchical approach for image content
modeling and retrieval. First, scenes are decomposed into regions
using pixel-based classifiers and an iterative split-and-merge algo-
rithm. Next, spatial relationships of regions are computed using
boundary, distance and orientation information based on different
region representations. Finally, scenes are modeled using attrib-
uted relational graphs that combine region class information and
spatial arrangements.

Still working on limited amounts of data, a novel approach is
represented in Dong and Xiang-bin (2008) and Bedawi and Kamel
(2011), Particle Swarm Optimization is used to classify remote
sensing data: classification rules are generated through simulating
the behaviors of bird flocking. Optimized intervals of each band are
found by particles in multi-dimension space, linked with land use
types for forming classification rules. Its performance with respect
to generalization issues still needs to be assessed in the case of
large archives.

Hierarchical partitioning is considered by a number of authors.
Bahroun et al. (2010) propose a hierarchical visual thesaurus of the
regions provided by a region labeling criterion based on point pat-
tern analysis into homogeneous and textured regions for boosting
the object recognition. The labeling criterion is based on the spatial
dispersion of interest points in the region validated on a satellite
image database.

5.8. Feature selection and ordering

Techniques such as ICA (Comon, 1996) and PCA (Abdi and Wil-
liams, 2010) are routinely used to generate more efficient feature
sets and to try and overcome the so called ‘‘curse of
dimensionality’’.

In Durbha et al. (2007), the relevance of a set of primitive fea-
tures for a particular land cover class or a combination of classes
is then assessed based on a wrapper-based genetic algorithm ap-
proach. Furthermore, an induction algorithm is used to arrive at
an optimal set of features.

In Aksoy (2008), spectral and textural features are quantized
and are used to train Bayesian classifiers with discrete non-para-
metric density models. An iterative split-and-merge algorithm is
used to convert the pixel level classification maps into contiguous
regions. Then, the resulting regions are modeled using the statisti-
cal summaries of their spectral, textural and shape properties. To
simplify computations and to avoid the curse of dimensionality
during the analysis of hyper-spectral data, Aksoy (2008) applies
Fishers linear discriminant analysis that finds a projection to a
new set of bases that best separate the data in a least-squares
sense. It applies principal components analysis that finds a projec-
tion to a new set of bases that best represent the data in a least-
squares sense. The top 10 principal components are kept instead
of the large number of hyper-spectral bands. Finally, discrete vari-
ables and a non-parametric model in the Bayesian framework are
considered where continuous features are converted to discrete
attribute values using the unsupervised K-Means clustering algo-
rithm for vector quantization. The number of clusters (quantiza-
tion levels) is empirically chosen for each feature.

Compression-based measures represent a niche with valuable
connections to the information-theoretical aspects of CBIR. Román
et al. (2011) use the Normalized Compression Distance as a mea-
sure of similarity between two data files using the compression
factor as an approximation to the Kolmogorov complexity. Cerra
et al. (2011) instead proposes a Fast Compression Distance that
can be efficiently computed between images and labels.
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6. Discussion

As made evident by the ample and diverse landscape of ana-
lyzed research, summarized in Table 3, EO mining evidently is a
very lively research domain. Yet the issues to be overcome are still
significant with respect to both basic research and operations.
With particular reference to the main systems represented in the
literature and whose attributes are reported in Table 2, the issues
of domain-specific (e.g. agriculture, disaster, urban etc.) perfor-
mance connected to basic architectures need to be taken into ac-
count together with aspects such as interoperability and
scalability. The issue of domain-specific performances involves
the specific optimizations that have been opted for in the engineer-
ing trade-offs typical of system design. Each one of the considered
systems can also be seen as determined in its strengths and limita-
tions by the choices taken with the aim of a specific application
domain.

The GeoBrowse system allows experimentation in a high-level
statistically oriented environment with rich data plotting and
explorative data analysis capabilities. Examples in the published
literature, though, mainly refer to LANDSAT data and to simple
Table 3
Cited references per EO mining system function.

Systems and architectures
King et al. (2007), Guo (2003), Tusk et al. (2003), Marchisio et al. (1998), Shyu et al.
Schröder et al. (2000), Datcu et al. (2002), Datcu et al. (2003), Molinier et al. (2007b)
Tobin et al. (2006), Marchisio et al. (1998), Datcu et al. (2003)

Query specification
Schröder et al. (2000), Datcu et al. (2003), Shyu et al. (2007), Klaric et al. (2006), Bar
Ben-Yitzhak et al. (2008), Marchisio et al. (1998), Marchisio and Cornelison (1999), M
Agouris et al. (1999)

Labeling
Datcu et al. (2003), Shyu et al. (2007), Aksoy (2008), Liénou and Campedel (2009), Li
Liénou et al. (2010), Shah et al. (2005), Li and Narayanan (2004), Costache and Datcu
Costache et al. (2006a), Ferecatu et al. (2005), Ferecatu (2005), Ferecatu and Boujema
Aksoy et al. (2009), Aksoy and Cinbis (2010), Koperski and Marchisio (2000), Kopersk
Alber et al. (2001), Costache et al. (2006b), Barb and Shyu (2010a), Barb and Shyu (2
Tuia et al. (2009), Rital et al. (2008)

Visualization
Bratasanu et al. (2011), Molinier et al. (2007b), Molinier et al. (2007a), Chen et al. (2
Guo et al. (2006), Guo and Gahegan (2006) Rivest et al. (2005)

Query processing
Durbha et al. (2008), Li et al. (2007), Vellaikal (1995), Datcu et al. (2003), Aksoy et al
Durbha et al. (2005a), Durbha and King (2005), Durbha et al. (2005b), Durbha et al. (
Ruan et al. (2006), Datta et al. (2006)

Indexing
Datcu et al. (2003), Shyu et al. (2006), Xiao and Liu (2011), Tobin et al. (2006), Arya
Tobin et al. (2002), Shyu et al. (2007), Scott et al. (2011)

Segmentation
Guo et al. (2009), Gueguen et al. (2011), Shah et al. (2005), Datcu et al. (2003), Liéno
Durbha et al. (2007), Trias-Sanz et al. (2008)

Primitive features
Datcu et al. (2003), Aksoy and Cinbis (2010), Guo et al. (2009), Molinier et al. (2007b
Cerra et al. (2011), Shyu et al. (2007), Schröder et al. (2000), Aksoy (2008), Tobin et a
Pietikainen et al. (2000), Yao and Chen (2003) Shah et al. (2005), Shah et al. (2007), S
Li and Bretschneider (2007), Dell’Acqua and Gamba (2001), Silva et al. (2005), Wales
Tusk et al. (2003), Koperski et al. (2002a), Aksoy et al. (2002), Aksoy et al. (2005), Ka
Pesaresi and Benediktsson (2001), Zhang and Lu (2001), Matsakis and Nikitenko (200

Multi-sensor
Molch (2010), Molinier et al. (2007b), Molinier et al. (2007a), Molinier et al. (2008)

Multi-temporal
Héas and Datcu (2005), Gueguen and Datcu (2007), Gueguen and Datcu (2008), Man
Molinier et al. (2007a), Julea et al. (2006), Walter (2004), Julea et al. (2011), Petitjean

Discretization
Cerra et al. (2011), Datcu et al. (2003), Shyu et al. (2007), Maheshwary and Srivastav
Dong and Xiang-bin (2008), Bedawi and Kamel (2011), Durbha et al. (2007), Aksoy (2
Mountrakis et al. (2011)
land cover classes. The relative richness of the operating environ-
ment might have proved a limiting factor as well as a competitive
advantage for the system. Here the dilemma at the base of the de-
sign seems to have been flexibility versus ease of use.

GeoIRIS is clearly optimized for metric resolution images of
man-made objects. Security appears to be the central considered
application. This well-specified focus has visibly impacted the sys-
tem design, for instance in the way very effective yet perhaps scar-
cely flexible indices are built into the DBMS that serves as a back-
end for the system. In the case of this system, performance and
flexibility seem to have been the two competing considerations.

A peculiarity of the I3KR system is its focus on the modeling of
information sources by hybrid domain-specific ontologies used for
data exploration and integration tasks. The tool has been exercised
in the context of rapid mapping for disaster management in coastal
areas: ontologies for Landsat and MODIS imagery based on the
Anderson classification system have been developed. Further
ontologies for land cover characteristics have been conceptualized
in the IGBP ontology and concepts in the hydrology domain have
been formalized. A limitation in this approach might be related
to the way the flexibility of the system is only obtainable by the
(2006), Tobin et al. (2006),
,

b and Shyu (2007),
archisio et al. (2000)

énou (2009),
(2007),
a (2007), Bordes and Prinet (2008),
i et al. (2002b), Blanchart et al. (2011),

010b), Ferecatu and Boujemaa (2007),

008), Guo (2003),

. (2004),
2007), Durbha et al. (2010),

et al. (1998),

u et al. (2010),

), Molinier et al. (2007a),
l. (2006),
hah et al. (2006),

sa and Datcu (2000), Aiyesha (2005),
laycilar et al. (2008),
5), Molinier et al. (2005)

tovani et al. (2009), Natali et al. (2011),
et al. (2012)

a (2009), Aksoy (2006),
008), Román et al. (2011),
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proper modeling of the domain ontologies through experimenta-
tion by advanced users.

KIM/KEO is probably the most flexible and interoperable among
the considered systems. For instance, it allows users to easily
include new feature extraction tools in the system. It has been
applied in scenarios ranging from large archive management to
flood mapping. Yet, focus on a specific application domain seems
to be lacking. This in turn has made it probably difficult to focus
on performance. KIM/KEO seems to be the result of choices that
are the opposites of those at the basis of GeoIRIS. In this case,
flexibility has been chosen on simplicity and sheer performance.

The RBIR system is based on an innovative agent-based archi-
tecture. It is demonstrated on a large set of cover types ranging
from forest to industrial. The primitive feature set considered is
efficient in the considered application domain, yet the authors de-
scribe the need to extend it in order to support multi-temporal
queries and to improve specificity via color information. Again,
the performance might have been obtained at the partial expense
of flexibility.

The key application for the PicSOM system is related to the
detection of buildings and the monitoring of construction and
destruction events based on image couples. Experimentations on
archives with larger data volumes and a broader spectrum of appli-
cations will be needed to evaluate the scalability of its performance
to large scale operations conditions.

The issue of scalability is of course a key one for all of the con-
sidered systems. KIM/KEO and GeoIRIS are arguably the tools that
have been experimented with on the largest scales. Yet, the quan-
titative measurement of retrieval performance in the case of very
large datasets requires the availability of ground truth information
that can be extremely expensive to acquire. New strategies need to
be devised in this regard.

The picture that emerges shows that most of the available tools
seem to be focusing on well-established archives from past mis-
sions rather than on currently active ones. The attributes in Table 2
show how most of the tools deal with decametric data from elec-
tro-optical multi-spectral sensors. Limited support is available for
more specialized sensor classes such as SAR and LIDAR. Multi-tem-
poral analysis is present only in a very small handful of systems.

While this is perfectly understandable based on historical rea-
sons, it nevertheless might represent a significant limiting factor
in the overall efficacy of novel missions with their increased data
rates. It is very important that systems that are operational on cur-
rently available VHR images are effectively adapted to be used, e.g.
on the upcoming Sentinel data.

Given the present and expected data production rates of sys-
tems such as WorldView, QuickBird, TerraSAR-X, COSMO Skymed,
the Sentinels, the availability of tools such as those presented in
Tobin et al. (2006), Costache and Datcu (2007) is urgently needed
to help users understand metric resolution data.

Furthermore, for objectives related to rapid mapping and large-
scale scene understanding in connection with large product ar-
chives, more effective tools for multi-sensor and multi-temporal
EO mining and analysis are required.

The specific usage patterns related to the management and
exploitation of very large EO archives are to be taken into consid-
eration as essential to the fulfillment of the promise of Earth obser-
vation for the next decades, and the issue of quantitatively
evaluating the different approaches in order to measure their rela-
tive merits needs to be considered.

A significant limitation of a number of approaches (e.g. the one
in Mantovani et al. (2009) and Natali et al. (2011) with respect to
the one in Julea et al. (2006)) is the lack of prevision for incomplete
knowledge of the data: the approaches are purely deterministic
and does not foresee sound procedures for sensor noise and error
treatment.
Going back to the plot in Fig. 1, we note that the temporal dis-
tribution of the considered citations shows that after a seminal
phase that extends to the early 1990s, and after an initial imple-
mentation in 2000–2005, the second half of the last decade has
been characterized by an explosion of activity. This growth seems
now to be receding in a phase in which archive owners and oper-
ators are transitioning to operational systems for automatic data
annotation connected directly to satellite payload ground
segments.
7. Conclusions

We have analyzed the state of the art of content-based retrieval
in Earth observation remote sensing image archives with specific
attention to complete systems showing promise for operational
implementation.

A generic system model has been presented and the functional-
ity decomposition it defines has been used as a basis for the anal-
ysis of published approaches.

The different paradigms at the basis of the main system families
have been introduced. The approaches taken have been analyzed,
focusing in particular on the phases after primitive feature extrac-
tion. The solutions envisaged for the issues related to feature sim-
plification and synthesis, indexing, semantic labeling have been
reviewed. The methodologies for query specification and execution
have been analyzed.

A large variety of approaches is present in the literature. Unfor-
tunately, no general benchmarking tool and dataset are available
for their evaluation. Quantitative benchmarking methods are
needed to address the question of evaluating the efficacy of the
engineering choices they embody.
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